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Abstract. This paper addresses the development of a stochastic multi-objective optimisation 

methodology and its implementation in the manufacturing of thick composite parts. Boundary 

conditions variability was quantified conducting a series of experiments and stochastic objects 

have been developed representing these uncertainties. The stochastic optimisation scheme takes 

into account the uncertainty of process parameters and boundary conditions and identifies op-

timal solutions that minimise process outcomes such as process duration and extent of defect 

formation and their uncertainty. The Kriging method was implemented to construct a compu-

tationally efficient surrogate model of manufacturing based on sample points selected by the 

Latin Hypercube Sampling (LHS) method and generated by a Finite Element (FE) model of the 

process. Response surfaces were constructed to test the accuracy of the surrogate model against 

the FE solution. A Genetic Algorithm (GA) was utilised to solve the multi-objective optimisation 

problem. The surrogate model was coupled with Monte Carlo (MC) and integrated into the 

stochastic multi-objective optimisation framework. The results show that a significant reduc-

tion in process duration and process induced defects variability in comparison with conven-

tional processing conditions of up to 80% and 40% respectively can be achieved by the 

optimisation. 
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1 INTRODUCTION 

Thermosetting matrix fibrous composites have been widely utilised in a variety of applica-

tions in industry due to their excellent mechanical properties combined with low weight.  The 

cure process, which is the last stage of thermosetting composite fabrication, is a non-linear heat 

transfer phenomenon, during which the exothermic reaction transforms the matrix from an oli-

gomeric liquid to a glassy solid. This spontaneous cross linking reaction results in the genera-

tion of a significant amount of heat which, in addition to the low thermal conductivity of the 

material in the through thickness direction, can lead to significant thermal gradients. Tempera-

ture overshoots can result in material degradation and excessive thermal stresses which can be 

critical in the case of high temperature operation [1]. Also, thermal gradients through the thick-

ness lead to non-uniformity of degree of cure. 

Conventional manufacturing processes reduce the probability of significant exothermic phe-

nomena by using conservative thermal profiles. These usually involve long dwell at relatively 

lower temperatures, which naturally result in long process durations and high manufacturing 

costs. In this context, multi-objective optimisation of composites manufacturing offers an op-

portunity for the minimisation of potential cure process-induced defects and cost. The selection 

of optimal cure profiles in order to minimise cure time and cure process-induced defects has 

been investigated as a single-objective optimisation problem [2-4] whilst the multi-objective 

problem has been addressed recently [3] showing a trade-off behaviour with an L shape Pareto 

front formed by process designs that minimise temperature overshoot and process duration. A 

number of these solutions represent considerable improvements in both process time and tem-

perature overshoot.  

The manufacture of composite materials involves many parameters presenting considerable 

variability [4]. This variability induces uncertainty into the manufacturing process and affects 

its outcome. These uncertainties can also initiate process defects resulting in significantly 

amount of rejected parts associated with considerable cost. Stochastic simulation methodolo-

gies have recently started to be developed in order to address the uncertainties in composites 

manufacture and to investigate their influence in process outcomes such as cure time, geomet-

rical distortion and temperature overshoot. The cure process includes different sources of vari-

ability in process parameters (cure kinetics) and boundary conditions (heat transfer coefficient, 

tool temperature). Cure kinetics parameters variability has been quantified experimentally using 

Differential Scanning Calorimetry (DSC) [5]. The initial degree of cure, activation energy and 

reaction order present significant variability introducing a coefficient of variation of approxi-

mately 30% in temperature overshoot and resulting in potential defects into the cured part. In 

terms of boundary conditions, experiments and stochastic models have shown carried out for 

the quantification of boundary conditions variability in an infusion process [6]. Stochastic mod-

els developed representing this variability integrated with an existing model of cure kinetics 

uncertainty to examine variability impact in the process outcomes. The surface heat transfer 

and tool temperature variability cause significant variability in cure time reaching a coefficient 

of variation of approximately 20% [6]. Tool temperature variability has the greatest influence 

on process outcome [7] whilst, higher levels of uncertainty increase the optimal cure time [8]. 

A stochastic multi-objective optimisation framework has been developed in the present study 

integrating a stochastic simulation method (Monte Carlo scheme) and a Genetic Algorithm (GA) 

in order to minimise the cure process time and temperature overshoot as well as their uncer-

tainty. The manufacturing process boundary conditions (convection heat transfer coefficient, 

surface temperature) variability has been quantified experimentally. Stochastic objects repre-

senting the boundary conditions variability have been developed and incorporated into the sto-

chastic simulation scheme. A surrogate model was developed using the Kriging method 
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replacing the FE model and reducing significantly the computational effort. The methodology 

is applied to the case of a thick flat carbon fibre-epoxy laminate. 

2 METHODOLOGY 

2.1 Cure Simulation 

A thermal cure simulation model was developed in the finite element solver MSC.Marc to 

simulate the curing stage of an infusion process in an oven. Figure 1 depicts a schematic repre-

sentation of the model geometry and boundary conditions. The model represents a flat compo-

site panel and comprises 26 3D iso-parametric eight-node composite brick elements of type 175 

in MSC.Marc for thermal analysis [9]. Each element comprises two plies of Hexcel G1157 

pseudo unidirectional carbon fibre reinforcement with 0.3 mm nominal thickness. Conse-

quently, the overall thickness of the flat laminate is 15.6 mm. The matrix is Hexcel RTM6 

epoxy resin. The boundary conditions illustrated in Figure 1 are implemented using user sub-

routines FORCDT and UFILM for time dependent prescribed temperature and forced air con-

vection respectively [10]. A two dwell cure profile as shown in Figure 2 is applied on the lower 

surface of the composite part by selecting the following parameters; 1st dwell temperature 𝑇1, 

2nd dwell temperature 𝑇2, 1st and 2nd dwell time 𝑑𝑡1 and 𝑑𝑡2 respectively, and ramp rate 𝑟. Due 

to the symmetry across the width of the part, the heat transfer model was solved as a transient 

1D heat transfer problem. The initial condition was considered to be 2% degree of cure and 

uniform temperature after the end of filling. User subroutines UCURE, USPCHT, and 

ANKOND were utilised  for the integration of material sub-models, cure reaction kinetics, spe-

cific heat capacity and thermal conductivity respectively [10].  

The cure kinetics model is a combination of an nth order model an autocatalytic model [11]. 

The cure reaction rate in is calculated as follows: 
𝑑𝑎

𝑑𝑡
= 𝑘1(1 − 𝑎)𝑛1 + 𝑘2(1 − 𝑎)𝑛2𝑎𝑚 (1) 

where 𝑎 is the current degree of cure, 𝑚, 𝑛1, 𝑛2the reaction orders, 𝑘1 and 𝑘2 the reaction rate 

constants following an Arrhenius law: 

𝑘1 = 𝐴1𝑒(−𝐸1/𝑅𝑇) (2) 

 𝑘2 = 𝐴2𝑒(−𝐸2/𝑅𝑇) (3) 

where 𝐴1, 𝐴2 denote pre-exponential factors, 𝐸 the activation energy and 𝑅 the universal gas 

constant. Model constants values are reported in [12]. 

 
Figure 1 Model schematic representation. 
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Figure 2 Two-dwell cure profile. 

The specific heat capacity of the resin and the fibre is calculated using experimental data 

obtained by modulated differential scanning calorimetry [2]. The specific heat capacity of the 

composite is computed making use of the rule of mixtures as follows: 

𝑐𝑝 = 𝑤𝑓𝑐𝑝𝑓 + (1 − 𝑤𝑓)𝑐𝑝𝑟 (4) 

where 𝑤𝑓 is the fibre weight fraction, 𝑐𝑝𝑓 the fibre specific heat capacity and 𝑐𝑝𝑟 the specific 

heat capacity of the resin. The thermal conductivity of the anisotropic composite material in the 

longitudinal direction is computed using an appropriate geometry-based model [13] and can be 

expressed as follows: 

𝐾11 = 𝑣𝑓𝐾𝑙𝑓 + (1 − 𝑣𝑓)𝐾𝑟 (5) 

where 𝑣𝑓 is the fibre volume fraction, 𝐾𝑙𝑓 and 𝐾𝑟 are the thermal conductivity of the fibre in 

the longitudinal direction and of the resin, respectively. In the transverse direction the thermal 

conductivity is calculated as follows: 

𝐾22 = 𝐾33 = 𝑣𝑓𝐾𝑟 (
𝐾𝑡𝑓

𝐾𝑟

− 1) + 𝐾𝑟 (
1

2
−

𝐾𝑡𝑓

2𝐾𝑟
) + 𝐾𝑟 (

𝐾𝑡𝑓

𝐾𝑟

1) √𝑣𝑓
2 − 𝑣𝑓 +

(
𝐾𝑡𝑓

𝐾𝑟
+ 1)

2

(
2𝐾𝑡𝑓

𝐾𝑟
− 2)

2 (6) 

where 𝐾𝑡𝑓 is the thermal conductivity of the fibre in the transverse direction.  

2.2 Surrogate model 

The utilisation of FE analysis for the simulation of cure requires high computational time. 

In terms of stochastic simulation and multi-objective optimisation problems, the use of FE 

model becomes computationally highly demanding. A surrogate model was constructed using 

the Kriging method to address this high computational effort replacing the FE-model. Figure 3 

shows the procedure of surrogate model development. The Kriging method requires a set of 

input points and their responses generated using FE analysis. Latin Hypercube Sampling (LHS) 

[14], a random sample generation method, was chosen for generating a sample of 15000 input 

values and their responses. In this study, the 1st and 2nd dwell temperature, 1st dwell time, heat 
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transfer coefficient, reaction order and activation energy have been considered as input param-

eters. Table 1 presents the input ranges of the initial design space. The outputs of the surrogate 

model are the cure time and temperature overshoot. Cure time is considered as the time at which 

the minimum degree of cure of the part is greater than 0.88, which is the degree of cure at which 

the epoxy resin (RTM6) reaches during an isothermal cure at 180°C, whilst temperature over-

shoot is the maximum difference between tool temperature and local temperature of the lami-

nate during curing.  

Kriging allows the estimation of untried parameters values to be made without bias and with 

minimum variance and more accurately in comparison with low order polynomial regression 

models [15]. 

Given a set of 𝑚 design sites  

𝑆 = [𝑠1 𝑠2 ⋯ 𝑠𝑚]Τ with 𝑠𝑖 ∈ ℝ𝑛 (7) 

and responses 

𝑌 = [𝑦1 𝑦2 ⋯ 𝑦𝑚]Τ with 𝑦𝑖 ∈ ℝ𝑞 (8) 
 

The data is assumed to satisfy the normalisation conditions 

𝜇[𝑆:,𝑗] = 0,         𝑉[𝑆:,𝑗, 𝑆:,𝑗] = 1, 𝑗 = 1, . . . , 𝑛   (9) 

𝜇[𝑌:,𝑗] = 0, 𝑉[𝑌:,𝑗, 𝑌:,𝑗] = 1, 𝑗 = 1, . . . , 𝑞 (10) 

where 𝜇[∙] and 𝑉[∙,∙] denote the mean and the covariance respectively.  

The Kriging model treats the deterministic response vector 𝑦(𝑥) ∈ ℝ𝑞, for a 𝑛 dimensional 

input 𝑥 ∈ 𝒟 ⊆ ℝ𝑛 as a realisation of a regression model ℱ and a random field, 

𝑦̂𝑙(𝑥) = ℱ(𝛽:,𝑙, 𝑥) + 𝑧𝑙(𝑥), 𝑙 = 1, . . . , 𝑞  (11) 

The regression model ℱ is a linear combination of 𝑝 chosen functions 𝑓𝑗(𝑥): ℝ𝑛 ⟼ ℝ, 

ℱ(𝛽:,𝑙, 𝑥) = 𝛽1,𝑙𝑓1(𝑥) + ⋯ 𝛽𝑝,𝑙𝑓𝑝(𝑥) 

= [𝑓1(𝑥) ⋯ 𝑓𝑝(𝑥)]𝛽:,𝑙 

≡ 𝑓(𝑥)Τ𝛽:,𝑙 

(12) 

where the coefficients {𝛽𝑝,𝑙} are regression parameters. 

The random field 𝑧 is assumed to have mean zero and covariance 

𝐸[𝑧𝑙(𝑤)𝑧𝑙(𝑥)] = 𝜎𝑙
2𝑅(𝜃, 𝑤, 𝑥), 𝑙 = 1, . . . , 𝑞 (13) 

where 𝜎𝑙
2 is the field variance for the 𝑙th component of the response and 𝑅(𝜃, 𝑤, 𝑥) is the corre-

lation surface with parameter vector 𝜃. 
 

 
Figure 3 Surrogate model construction methodology. 
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Table 1 Range of surrogate model input parameters. 

Parameters Range 

𝑇1[℃] 135-175 

𝑇2[℃] 175-215 

𝑑𝑡1[𝑚𝑖𝑛] 42-300 

ℎ[𝑊/𝑚2/°𝐶] 13.8-21.8 

𝐸2[𝐽/𝑚𝑜𝑙] 56020-59620 

𝑚 1.008-1.572 

For the set 𝑆 of design sites, an 𝑚 × 𝑝 design matrix 𝐹  can be constructed with 𝐹𝑖𝑗 = 𝑓𝑗(𝑠𝑖), 

𝐹 = [𝑓(𝑠1) ⋯ 𝑓(𝑠𝑚)]Τ (14) 

The 𝑚 × 𝑝 correlation matrix 𝑅 can be constructed as 
 

𝑅𝑖𝑗 = ℛ(𝜃, 𝑠𝑖, 𝑠𝑗), 𝑖, 𝑗 = 1, . . . , 𝑚 (15) 
 

The fitted regression parameter 𝛽∗, a 𝑝 × 𝑞 matrix, can be calculated considering matrices 𝐹 

and 𝑅, using least squares as follows: 

𝛽∗ = (𝐹T𝑅−1𝐹)−1𝐹T𝑅−1𝑌 (16) 

For any untried design point 𝑥, the vector 𝑟(𝑥) of correlations between different 𝑧 at design 

sites and 𝑥, can be defined as 

𝑟(𝑥) = [ ℛ(𝜃, 𝑠1, 𝑥) ⋯ ℛ(𝜃, 𝑠𝑚, 𝑥)]T (17) 

Therefore, the Kriging predictor is 

𝑦̂(𝑥) = 𝑓(𝑥)T𝛽∗ + 𝑟(𝑥)T𝛾∗ (18) 

where the 𝑚 × 𝑞 matrix 𝛾∗can be calculated through the residuals, 

𝑅𝛾∗ = 𝑌 − 𝐹𝛽∗ (19) 

Matrices 𝛽∗ and 𝛾∗are fixed for a fixed set of design data. Only vectors 𝑓(𝑥) ∈ ℝ𝑝  and 

𝑟(𝑥) ∈ ℝ𝑚 have to be computed for every new 𝑥. 

Correlation models can be divided into two groups, those containing functions that have a 

parabolic behaviour near the origin (Gaussian, Cubic and Spline), and those including functions 

with a linear behaviour near the origin (exponential, linear and spherical). The curing stage is a 

continuously differentiable phenomenon resulting in a parabolic behaviour of correlation func-

tion close to origin. Therefore, a Gaussian function and a 2nd order polynomial were selected 

for the correlation and the regression model respectively. Coefficients 𝛽∗ and 𝛾∗of Eq. (19), the 

2nd order regression and the Gaussian correlation function respectively, were calculated using 

the Matlab toolbox for Kriging modelling [16]. The surrogate model was implemented in C++. 

2.3 Experimental set-up for the quantification of boundary conditions uncertainty 

The uncertainty of boundary conditions was investigated by carrying out a series of experi-

ments using an infusion set-up placed inside in an oven. These experiments aim to quantify the 

variability of the air temperature in the oven and of the surface heat transfer coefficient between 

the vacuum bag and the air. 

Ten experiments were conducted, utilising the set-up depicted in Figures 4 and 5. It com-

prises a CALTHERM E9321V2 oven with an EUROTHERM 2408P4 PID controller, a 10 mm 

aluminium plate, a nylon N64PS-x VAC INNOVATION peel ply fabric, a nylon xR1.2 VAC 

INNOVATION vacuum bag, two K-type thermocouples and two RdF micro-foil heat flux sen-

sors [17].  
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Figure 4 Schematic representation of experimental set-up. 

A carbon fibre-epoxy flat panel fabricated by infusion process was utilised to produce ther-

mal conditions similar to those during the cure of a part. The resin system of the panel was 

Hexcel RTM6, whilst the preform was Hexcel AS7 6k carbon fibre [18] with an areal density 

of 280 g/m2. The composite part was placed on the tooling plate, covered with the peel ply and 

the vacuum bag and sealed before experimental runs.  

The flux sensors were placed on the vacuum bag to measure the forced convection variability 

as well as its spatial dependence. A K-type thermocouple was mounted on the bag to measure 

the surface temperature, whilst a second sensor was placed close to surface but outside the 

thermal boundary layer to monitor air temperature. The temperature was set-up at 160 °C in all 

tests. A National Instruments LabVIEW in house code was utilised for data acquisition and the 

data were acquired with a frequency of 0.8 Hz. 

The micro-foil flux sensor consists of a thin layer, and is a differential thermocouple sensor 

using T-type thermocouples [17]. The sensor measures the temperature on both sides of the thin 

layer, which are used to calculate the heat gain or loss through the thin layer. The same heat 

flux should flow through the sensor and the surface where the sensor is placed. The sensor 

output is a voltage signal which is proportional to heat flux. Specifically, the heat flux 𝑄̇ is 

calculated by the following relation: 

𝑄̇ = (𝐻/(𝐶 𝑇𝐹) (20) 

where 𝐻 is the sensor output, whilst 𝐶 and 𝑇𝐹 are a calibration multiplier and a temperature 

multiplication factor respectively, and are provided by the manufacturer. The sensors used in 

these experiments have a calibration multiplier of 0.15 μV/W/m2. The temperature multiplica-

tion factor is a function of temperature and can be found in [17]. The heat transfer coefficient 

ℎ was calculated using the temperatures of the surface 𝑇𝑠 and air in the oven 𝑇𝑎𝑖𝑟 as follows: 

ℎ =
𝑄̇

𝑇𝑠 − 𝑇𝑎𝑖𝑟
 (21) 

 
 

a) b) 

 
Figure 5 a) CALTHERM E9321V2 oven with a EUROTHERM 2408P4 PID controller and data acquisi-

tion system b) infusion set up with the sensors. 
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2.4 Stochastic simulation 

The stochastic simulation was carried out using a Monte Carlo (MC) scheme. This method 

involves generation of random input stochastic variables using a random number generator. The 

deterministic model is executed a number of times for each set of inputs and the process out-

comes are analysed in term of their probability distributions. The simulation requires a certain 

number of iterations to ensure the convergence in mean and standard deviation.  

2.5 Stochastic multi-objective optimisation 

The aim of stochastic optimisation is to minimise cure time and temperature overshoot and 

their variability by optimising the cure profile parameters. An interface has been developed 

incorporating MC simulation into a Genetic algorithm (GA) for multi-objective optimisation. 

A two dwell cure profile depicted in Figure 2 has been considered and parametrised using three 

parameters; temperature of first and second dwell and the duration of the first dwell. The ranges 

of potential values for each parameter used in optimisation are summarised in Table 2. It should 

be noted that the ramp rate  𝑟 and second dwell time 𝑑𝑡2 are not considered as design parame-

ters in order to reduce the dimensionality of the problem and are equal to 2 °C/min and 𝑑𝑡1 

respectively. The minimisation objectives of the optimisation are the mean values and standard 

deviations of  𝑡𝑐𝑢𝑟𝑒  and   𝛥𝛵𝑚𝑎𝑥 . Figure 6 summarises the steps the stochastic optimisation 

methodology. The GA begins by generating the first population of individuals. A Monte Carlo 

simulation is carried out using the surrogate model for each individual calculating the mean 

value and the standard deviation of cure time and maximum temperature overshoot. A new 

population is generated by a number of operations (crossover, mutation) based on the previous 

population individuals. The GA finishes when a convergence criterion is satisfied and the out-

put is a matrix of the optimal points called Pareto front. 
 

Table 2 Design parameters ranges 

Parameters Range 

𝑇1[℃] 135-175 

𝑇2[℃] 175-215 

𝑑𝑡1[𝑚𝑖𝑛] 42-300 

 
Figure 6 Stochastic multi-objective optimisation framework. 
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3 RESULTS 

3.1 Validation of surrogate model 

Figure 7a shows the dependence of  𝑡𝑐𝑢𝑟𝑒 on 𝑇1 and 𝑑𝑡1, for constant 𝑇2, ℎ, 𝑚 and 𝐸2 equal 

to 195 °C, 17.82 W/m2/°C, 1.29 and 57820 J/mol respectively. The response of the surrogate 

model is in good agreement with the response of the FE model, with an average absolute dif-

ference of 0.56 min. The response surface shows a trade-off between 𝑑𝑡1 and  𝑡𝑐𝑢𝑟𝑒 especially 

in the region of low 𝑇1. Figure 7b illustrates the response surface of temperature overshoot as a 

function of the first and second dwell temperature using the surrogate and FE model. In this 

case the dwell time is equal to 83 min and the remaining input parameters ℎ, 𝑚 and 𝐸2 as re-

ported in the previous case. The average absolute difference is 0.69 °C, showing the high accu-

racy of the surrogate model. The overshoot increases as a function of  𝑇1. A global minimum of 

temperature overshoot is reached for a 𝑇1 in the 140-145 °C range. In this case the first dwell 

advances the chemical reaction as much as possible in order to minimise temperature over-

shoots in the second dwell. The overshoot increases slightly for first dwell temperatures below 

140 °C as the temperature is too low to advance the resin reaction during the first dwell suffi-

ciently to supress generation of higher exothermic effects during the second dwell. 

The use of the surrogate model addresses problems related to computational time, specifi-

cally in the case of stochastic simulations where a large number of iterations is required. A 

typical two-dwell cure profile was utilised as input for Monte Carlo where the number of model 

runs was equal to 1000. Figures 8a and 8b show the cumulative density functions (CDFs) of 

cure time and temperature overshoot respectively, calculated both by the FE and surrogate mod-

els. It can be observed that the two CDFs are in a good agreement.  

 

a) b) 

   
Figure 7 Response surfaces a) cure time as a function of 1st dwell temperature and 1st dwell time b) tem-

perature overshoot as a function of 1st and 2nd dwell temperature.  
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a) b) 

 
Figure 8 Cumulative density functions (CDFs) of a standard two dwell cure profile; a) CDF of cure time 

b) CDF of temperature overshoot. 

3.2 Experimental results 

Figures 9a and 9b summarise the experimental data of heat transfer coefficient and surface 

temperature evolution over time respectively for ten different runs. Both 𝑇𝑠 and ℎ present sig-

nificant variability across different runs. The short term variability can be attributed to the mo-

tion of the air streams inside the oven due to the fan rather than to signal noise effects. The 

surface temperature presents a periodic term over time caused by the temperature controller of 

the oven and short term variability due to random variations. The results of surface heat transfer 

coefficient show only short term variability and a variable level across the runs. These varia-

tions can be attributed to the fact that the air movement is forced by the fan in the oven. 

 
 

a) b) 

 
Figure 9 Experimental results of a) heat transfer coefficient b) surface temperature. 
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3.3 Stochastic objects development 

Fast Fourier Transformation (FFT) implemented in MATLAB was utilised to calculate the 

frequency of  𝑇𝑠. Then, a cosinusoidal fit as shown in Figure 10 was performed making use of 

generalised reduced gradient non-linear optimisation method implemented in MS Excel [19] 

calculating the amplitude of the periodic trend. Consequently, detrending was applied in order 

to generate a stationary process of surface temperature. The Ornstein-Uhlenbeck process (OU), 

which is a mean reverting second order stationary Gaussian process, was utilised to represent 

the surface temperature after detrending. The stochastic differential equation of OU process can 

be written as follows [20]: 

𝑑𝑆 = 𝜆(𝜇 − 𝑆)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (22) 

where 𝑆 is the OU process, 𝑊𝑡 a Brownian motion following a normal distribution with mean 

0 and standard deviation 1 so that 𝑊𝑡~𝑁(0,1), whilst 𝑑𝑊𝑡 follows a normal distribution with 

average 0 and standard deviation √𝑑𝑡 so that 𝑊𝑡~𝑁(0, √𝑑𝑡), 𝜆 controls the speed of reversion 

to the long term average of the process, 𝜎 is the process volatility and 𝜇 is the long term mean 

of the stochastic process. The analytical solution of Eq. (22) has been used in this study to 

develop the stochastic object of surface temperature and can be written as follows [20]: 

𝑆𝑡 = 𝑒−𝜆𝛥𝑡𝑆𝑡−1 + (1 − 𝑒−𝜆𝛥𝑡)𝜇 + 𝜎√
(1 − 𝑒−2𝜆𝛥𝑡)

2𝜆
𝑊𝑡 (23) 

where 𝛥𝑡 is the time increment. 

This procedure was repeated for each experimental run. The stochastic process of surface 

temperature can be expressed as follows: 

 𝑇𝑠 =  𝐴𝑠 +  𝐵𝑠𝑐𝑜𝑠 𝜔𝑠𝑡 +  𝑆𝑠 (24) 

where  𝐴𝑠 is the level of each experimental curve,  𝐵𝑠 and  𝜔𝑠 the amplitude and frequency of 

the cosinusoidal fit respectively, and  𝑆𝑠 the mean reverting stationary stochastic process (OU) 

calculated by Eq. (23). The surface heat transfer coefficient does not involve a periodic trend 

and can be modelled as realisation of a random scalar variable as follows: 

ℎ =  𝐴ℎ +  𝐵ℎ𝑦 (25) 

where  𝐴ℎ is the level,  𝐵ℎ the volatility of the process for each run, and 𝑦 is a standard normal 

variable. The statistical properties as calculated from the different experimental run are pre-

sented in Table 3. 

 
Figure 10 Cosinusoidal fit of surface temperature  
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Table 3 Statistical properties of boundary conditions. 

Boundary conditions 
Stochastic model 

parameter 
Mean Standard deviation 

ℎ [(𝑊/𝑚2)/°𝐶]  𝐴ℎ 17.82 1.33 

  𝐵ℎ 2.1 0.1 

𝑇𝑠[℃]  𝐴𝑠 152 1.64 

  𝐵𝑠 0.82 0.086 

  𝜔𝑠 0.02 0.0003 

 𝜆𝑠 0.97 0.4 

 𝜎𝑠 0.4 0.052 

 𝜇𝑠 0.007 0.022 
 

 
Figure 11 Surface temperature variability over time. 

The FE model, described in section 2.1 was used with a time increment of 3 sec to represent 

short term phenomena. The stochastic simulation was compared with the deterministic model 

to evaluate the significance of short term variability. Figure 11 shows the temperature evolution 

with time at the bottom and the middle of the composite part for both stochastic and determin-

istic model. The temperature at the bottom of the part presents a short term variability with 

negligible influence of variability.   

A number of stochastic simulation iterations have been carried out to calculate the average 

and standard deviation of cure time and temperature overshoot over time. It was found that the 

mean value of cure time and temperature overshoot are 94.9 min and 34.6 °C with standard 

deviations 0.07 min and 0.3 °C respectively. The cure time and temperature overshoot of the 

deterministic model were 95 min and 34 °C, indicating the negligible influence of short term 

variability of surface temperature. Similarly, heat transfer coefficient short term variability does 

not affect the cure time and the temperature overshoot. 

According to these results, the stochastic simulation can be carried out considering the var-

iability of the level of surface temperature and surface heat transfer coefficient. Therefore Eq. 

(24) and (25) can be expressed as follows: 

 𝑇𝑠 =  𝐴𝑠 (26) 

ℎ =  𝐴ℎ (27) 

Furthermore, the variability of cure kinetics is controlled by the reaction order 𝑚, and acti-

vation energy 𝐸2 (Eqs. (1),(3)) [12]. Tables 4 and 5 summarise the statistical properties and the 

correlation matrix of 𝑚 and 𝐸2 respectively. 
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Table 4 Statistical properties of stochastic cure kinetics parameters. 

Parameters Mean Standard deviation 

𝑚 1.29 0.094 

𝐸2 [𝐽/𝑚𝑜𝑙] 57820 600 
 

Table 5 Correlation matrix. 

Parameters m 𝐸2 [𝐽/𝑚𝑜𝑙] 
𝑚 1 0.55 

𝐸2 [𝐽/𝑚𝑜𝑙] -0.84 1 

3.4 Stochastic simulation  
 

A Monte Carlo simulation has been carried out for the  standard two dwell cure profile [21] 

in order to investigate the variability of cure time and temperature overshoot. The nominal two 

dwell cure profile comprises one dwell temperature at 160 °C with duration 75 min and a second 

dwell temperature at 180 °C for 75 min, whilst the ramp rate is equal to 1 °C/min. The surface 

temperature 𝑇1 and 𝑇2, surface heat transfer coefficient ℎ, activation energy 𝐸2 and reaction or-

der 𝑚 have been considered as stochastic objects. Figure 12a illustrates the results of Monte 

Carlo for cure time. The mean time converges after 100 iterations and is 111 min, considerably 

faster than standard deviation which converges after about 500 iterations and is equal to 7.5 

min. The results of temperature overshoot are illustrated in Figure 12b. The mean value con-

verges after 100 iterations to 20.5 °C, whilst the standard deviation converges after 400 runs to 

3.4 °C. Cure time and temperature overshoot of the standard cure profile present coefficients of 

variation of 6% and 16.5% respectively, necessitating a thorough investigation of a solution not 

only with the minimum value but with minimum uncertainty.  

a) b) 

 

Figure 12 Monte Carlo simulation results a) Cure time [min] b) Temperature overshoot [°C]. 
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3.5 Stochastic multi-objective optimisation 

A deterministic two-objective optimisation was carried out using the nominal values of input 

parameters. Figures 13a and 13b illustrate box plots of each of stochastic Pareto points of 𝑡𝑐𝑢𝑟𝑒 

and 𝛥𝛵𝑚𝑎𝑥 respectively. In addition, the deterministic Pareto front is illustrated with a solid 

grey line. Pareto fronts of both stochastic and deterministic optimisation are in the form of an 

L-shape curve dividing the objective space into two different regions. A horizontal region in 

which cure time can be reduced significantly without considerable changes in exothermic ef-

fects and a vertical region in which low temperature overshoot can be reduced significantly 

with small changes in cure time. The main difference between he stochastic and deterministic 

Pareto fronts is that the former includes points in which the mean values are dominated by other 

optimal points, which they dominate then in terms of variability, whilst in deterministic the 

domination ranking occurs only in terms of nominal values. Also, the mean values of the sto-

chastic Pareto front present higher cure times than the points of the deterministic Pareto front 

in the case of conservative cure profiles.  

The comparison between an optimal point and a standard two dwell profile, as reported in 

Table 6, illustrates the improvements of stochastic optimisation both in minimisation of mean 

values and variability. Specifically, the optimal cure profile results in reduction of 13% and 51% 

in cure time and temperature overshoot in comparison with the standard cure profile, whilst 

standard deviations are reduced by 66% and 40% respectively.  

Cure time shows an overall lower variability than temperature overshoot with the means of 

coefficient of variation are equal to 2% and 21% for cure time and temperature overshoot re-

spectively. The stochastic Pareto front includes points with cure time values twice as high as 

for deterministic points. These points are included in the stochastic Pareto front because they 

present the highest stability in potential fluctuations of process parameters and boundary con-

ditions. These individuals are generated using conservative cure profiles with low first dwell 

temperature and long first dwell time, therefore the thermal gradients are negligible and the 

duration of cure long. Moreover, the tip of vertical region of stochastic Pareto front includes 

one point in which cure time and temperature present high uncertainty with standard deviations 

of 7 min and 3.6 °C respectively. 

The variability of temperature overshoot of points in the vertical region may result in shifting 

of the stochastic Pareto front in higher or lower values of temperature overshoot than in the 

deterministic case. In the horizontal region stochastic optimal points present higher temperature 

overshoots than deterministic points in the range of 3-4 °C. The results obtained with the sto-

chastic optimisation methodology highlight the significant improvements in terms of minimi-

sation both of mean value and variability of cure time and temperature overshoot in comparison 

with the results of standard cure profiles.  

 
Table 6 Parameters values for optimal points and a standard cure profiles. 

Parameter Optimal point Standard two-dwell 

𝑇1[℃] 145 160 

𝑇2[℃] 211 180 

𝑑𝑡1[𝑚𝑖𝑛] 65 75 
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a) 

 
b) 

Figure 13 Pareto front of stochastic and deterministic multi-objective optimisation a) cure time box plots; 

b) temperature overshoot box plots. 

4 CONCLUSIONS 

The findings of this work highlight the efficient opportunities offered by the stochastic opti-

misation in terms of eliminating cure time and temperature overshoot uncertainty. The utilisa-

tion of stochastic multi-objective optimisation may lead to significant improvements of the 

composites manufacturing process accomplishing more stable solutions than convention pro-

files. In addition, the implementation of the stochastic optimisation in the other stages of man-

ufacturing will result in reduction of process duration and thus in minimisation of the cost.  
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